If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12n^2-20=0
a = 12; b = 0; c = -20;
Δ = b2-4ac
Δ = 02-4·12·(-20)
Δ = 960
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{960}=\sqrt{64*15}=\sqrt{64}*\sqrt{15}=8\sqrt{15}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{15}}{2*12}=\frac{0-8\sqrt{15}}{24} =-\frac{8\sqrt{15}}{24} =-\frac{\sqrt{15}}{3} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{15}}{2*12}=\frac{0+8\sqrt{15}}{24} =\frac{8\sqrt{15}}{24} =\frac{\sqrt{15}}{3} $
| y^2+3y-10=0* | | 2√3x2√3=x | | 2y^2+8y+6=0* | | 54=2x-20 | | (T)=64+4t | | 4(4x-4)=5x-49 | | -8z+5+4=-29 | | -31=2(x-3)-3 | | -49=3(2x-2)-1 | | P(x)=5/2x-7/5 | | 4.6+10m=7.34 | | 190-3x=180 | | 37)3x=27 | | 14=8-6r-1 | | 0.15(y-0.2)=2-0.5(1-y) | | 4x2-22x-12=0 | | 2.9+10m=8.78 | | 63÷x=7 | | 10z+35=21 | | -3(4-6h)=32 | | F(x)=3x-2/3 | | 3y/2+y=50 | | 19+21=-4(2x-10) | | 2/5x-3=75 | | 5+13=-2(2x-9) | | b/4=2.8 | | 15=7x–3x–2 | | 7(x-5)-2=-37 | | 22x-44=20x+32 | | 3(4x+5)=-16+7 | | 66/t=6P | | 5+5=-2(3x-5) |